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Abstract—The objective of this paper is to present a numeri-
cal technique based on a combined approach of using a ‘‘quasi-
dynamic,’”’ a ‘“‘dynamic’’ and an asymptotic approach for the
analysis of nonuniform microstrip transmission lines and dis-
continuities using the grounded dielectric slab Green’s func-
tions. The regions of validity of the quasi-dynamic and asymp-
totic approximations have been determined in terms of the
required accuracy in the Green’s functions. Finally, numerical
examples have been presented and checked with available data
to check the accuracy of this new technique.

1. INTRODUCTION

HIS PAPER describes an Electric Field Integral

Equation Formulation (EFIEF) for the dynamic char-
acterization of nonuniform microstrip transmission lines
and discontinuities. In the dynamic approach, the Green’s
functions are Sommerfeld type integrals that can be eval-
uated only numerically. The crucial element to a numer-
ical advantage of the EFIEF therefore, lies in the efficient
computation of the Green’s functions, particularly in the
analysis of electrically large structures. In this paper, the
quasi dynamic approximation [1]-[3] has been used for
the near field and the asymptotic steepest descent approx-
imation for the far field calculations. The regions of va-
lidity of the quasi-dynamic and asymptotic approxima-
tions are determined in terms of the microstrip physical
parameters and the required accuracy.

Section II of this paper deals with the moment method
formulation of the problem. For multi-conductor trans-
mission lines, a new approach of utilizing the transversal
quasistatic distribution for the transversal component of
the current has been described.

Section III deals with the circuit parameters extraction
from the current and voltage distributions. Several ex-
amples have been solved in order to demonstrate the use-
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fulness of the technique. Finally the conclusion is pre-
sented in Section IV,

II. MoMENT METHOD FORMULATION

For the most general planar structures, the current dis-
tribution is a two dimensional current with both longitu-
dinal and transversal flows. For most transmission lines-
like structures however, the transversal component of the
current is negligible compared to the longitudinal com-
ponent and the current may be assumed to flow in the ax-
ial direction only [1], [4]. Such an assumption leads to a
considerably more efficient moment method solution as it
substantially reduces the generalized impedance matrix
size. Thus considering the microstrip multi-conductor
transmission line of Fig. 1, the current distribution on each
metallic conductor may be written as:

N
Jo= L a0 Ta), ()

where T,(x") is a triangular element defined as

x 3\
1+x— -X =x=0
)
! ‘ x
T.(x") = 1—x~ O0=<x=x
2
elsewhere

Here it was assumed that the current element is locally
oriented in the X direction and the origin of the coordi-
nates coincide with the mid point of the interval [~x,, x,]
over which the current element is defined (Fig. 2). The
transversal current distribution Q,(y’) is assumed to be
known. The moment method generalized impedance ele-
ments for such distribution can be written as [1], [2]
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Fig. 1. Shows a 3 conductor microstrip transmission line where W is the
line width, S is the separation between conductors, ¢ is the conductor thick-
ness, & is the dielectric height and e is the complex dielectric constant.

-X2 -X1 0 x1 %2

Fig. 2. Shows the triangular basis functions for the longitudinal compo-
nent of the current distribution.

where G, and G, are the Sommerfeld type Green’s func-

tions of the problem and C;, C,, G, G, have been given

in [1], [5]. For completeness, they are also given in Ap-

pendix A. The generalized voltage vector elements are
given by

Vi = (E; Q(y)T;(x")). €)

The transversal current distribution Q;( y’) depends on the
microstrip geometrical data. Thus for a single narrow line,
that is a line such that (W/H) is small (typically, (W/H)
=< 0.1), the transversal current distribution has a square
root behavior [1, 4, 6] and can be replaced with a cylin-
drical wire of equivalent radius (a = [W/4]) [7]. The cur-
rent may thus be assumed filamentary and flowing in the
axis of the cylinder only. The boundary condition of zero
tangential electric field is then applied at the surface of
the cylindrical wire. For such a distribution, the gener-
alized impedance matrix elements may be further simpli-
fied to:

= [y [
ij li

Gl(x’ Y, X’, y,)Tn(x,)Tm(xj) gx : Z?Xj

d d
GZ(xa Y, xl, )7’) ,Tn(x’) + _Tm(xj)
dx ax;

For microstrip lines where (W/H) is large (typically,
(W/H) = 1), the transversal current distribution is ap-
proximately constant over the strip width [1], [2], [6]. It
may thus be written as:

N

2 £y T,(x") e, 4)

JS:i:IW
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For the intermediate region, the current distribution is as-
sumed to follow the square root behavior. Therefore, for
a single microstrip line, the transversal current distribu-
tion may be assumed known for all values of (W /H). For
a multi-conductor line however, the transversal current
distribution on each of the lines can no longer be approx-
imated by a square root or a constant distribution due to
the edge effects. The transversal distribution also depends
on the location and number of excited lines. For example
Figs. 3(a)-(c) show the current distribution on the three
microstrip line of Fig. 1 for different values of (W/H)
and different spacings (S/W). In these plots, the current
distributions for conductors 1, 2, and 3 have been plotted
on the intervals [0-20], [30-50], and [60-80] respec-
tively. It is obvious from these figures that the square root
behavior is not valid, particularly on the lines adjacent to
the excited line except for very large (S/W) (typically
(S/W) = 10). Thus if the spacing is very large and
(W/H) is small, the lines may be approximated by wires
of equivalent radii equal to (1/4) of the strip widths. If
(W/H) and (S§/W) are both large, the current distribution
may then be assumed constant on all lines. For the most
general case, that is an arbitrary (W/H) and arbitrary

(S/W), the transversal current distribution is obtained by

solving the equivalent 2D problem involving the charge
distribution {8], [9]. The equivalence of the charge and
current distributions for the uniform, infinite length,
multi-conductor transmission line has been shown in [9].
The exact numerical evaluation of the dynamic Green’s
functions involves a numerical computation of Sommer-
feld type integrals [3], [10], [11]. The location of the ze-
ros of the TE and TM microstrip transcendental equations
have to be very accurately determined [12], [13] and ex-
tracted from the integrands. In this paper a combined
(Newton-Raphson, bisection root) search has been unu-
tilized to locate the zeros to within any specified accu-
racy. The numerical integration is then performed in es-
sentially the same manner as described in [3], [10], [11].

2.1 The Quasi-Dynamic Approximation for the Green’s
Functions

In this paper, the quasi-dynamic approximations G,
and G, are defined as

Gig(p) = lim Gi(p) 3)
Gyy(p) = lim Go(p) (©)

and are thus given by [1], [2], [3], [10]:

e —jkiro e —kir
Gy, (p) = -
lq(p) "o r (7)
) —jkir
qu(p)=(1—n){ — =1+

1
Y (e e ®)
i=1 r;
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Fig. 3. (a)-(c) Shows a comparison between the normalized transversal.
distribution of the longitudinal current on each of the 3 conductors of Fig.
1 and the square root distribution. [0-20] Conductor 1, [30-50] Conductor
2, {60--80] Conductor 3.
where In this paper we define the region of validity of the quasi-
1~ dynamic approximation G;,(p) by the radius (R;,) such
= 9)  that
g 1 + e ©)
G;(p) — Gy (p)
q
r=Ap?+ 7%, (10) ————— | < emorforallp = R, (12)

When the substrate height 7z is very small compared to
both, the wavelength of operation and the source-to-field
distance (p), G,, may be written as

—jkiro

. e
Gy, (0) = 2jh’k, (11)

>— + higher order terms.
To

G;(p)

where error is any specified error tolerance. To illustrate,
Figs. 4(a)~-(b) show R, and R,, as functions of the sub-
strate heights & for different values of ¢, and an error tol-
erance of 0.05. It should be noted, that the quasi-dynamic
approximations may as well be defined in terms of &, or
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Fig. 4. (a)-(b) Shows the radius R;, of the region of validity of the quasi-
dynamic approximation for different values of & and e,.

as defined in [14] by

e—jkro e—jkr:
G1q2 = -
o n
e—jkn i=om ) e—-jkri
G = (1 ~ n){ — L+ 2 (-piP }
r i=1 Fi

(14)
where the wave number k is defined by

e % = cos (k;r) + jsin (ky7) 15)
and k, is the wave number in medium 2. The definition

given by (7) and (8) however, seems to yield the largest
region of validity.

2.2 The Asymptotic Approximation

The asymptotic approximations G,,(p) and G,,(p) for
G(p) and G,(p) are defined as

Gla (p)

= lim Gy(p) (16)
G (p) = 1lim Gy(p) (17)

and though they are defined in the limiting sense as p —
oo, they are generally valid to an excellent accuracy for p
greater than a fraction of a free space wavelength for most
practical microstrip circuits [15]. In this paper, the
asymptotic solution is obtained by deforming the path of
integration in G(p) and G,(p) to the path of steepest de-
scent and using the first order approximation for the Han-

kel function, namely
__2__ e ~jNp ej(7"/4) (18)
TAP ‘

A detailed description for the derivation of the general
expressions for G,(p) and G,(p) can be found in [16].
For completeness, the general expressions for Gy, (p) and
Gy, (p) are given in the Appendix. For the special case
when the frequency of operation is such that

lim Hi(\p) =
(Ap) = o0

f= 19)

Co
dh~Ne, — 1
where ¢ is the speed of light in air, Dty has no poles on
the real axis while Dy has only one pole [12], [13]. The
expressions for Gy,(p) and G, (p) then reduce to

—2j tan* (kyhNe, — 1) g ~ikin

Ga p) =
1a(P) p— k2
Ay 1
21 - j)
/ blTM
[21'(5, -1 — tan® (ki Ve, — 1)
+
Gy, = & =1 e ke
]TM 1
ca-pie] L
~J blTM klp2
+ higher order terms
+ 2Ak1TM(1 +]) ; W( Vkl blTM)
(21)

where the parameters of the above equations are given in
the Appendix. It is interesting to note that the phase be-
havior of the asymptotic solution predicted by (20) is the
same as the phase predicted by (11). From this it can be
concluded that the phase term of the quasi-dynamic ap-
proximation (11) is valid for all distances (o) at the inter-
face when the substrate height (k) is small compared to

~the wavelength of the frequency of operation. Further-
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more, it was observed in [1] that the quasi-dynamic phase

1s more accurate, at the interface, in the far field than in

the near field. Thus to obtain a more accurate asymptotic
representation than (20) we define

—2j tan® (kjhve, — 1) g ~hp

2 = e — 1 ki p?

e —jk1po e —jkipi
. exp [j Im <log < -~ >>} 22)
Po P1

where Im (x) denotes the imaginary part of x. Thus Gy,5(p)
has the same magnitude as G,(p) but a different phase.
The phase of Gy,,(p) however, is more accurate than that
of Gy,(p). Both equations (20) and (22) have been com-
pared to the dynamic solution for a range of values of h
and ¢, such that (19) is satisfied and in all cases, it was
found that (22) is a better approximation for the dynamic
solution  than (20). To investigate the accuracy of the
asymptotic solution Gy,(p), we compare it to the dy-
namic solution G,(p). For this purpose, we define:

Gl(P)
= J— 23
tna ‘Glaz(m @3
PIG/()]
Ry, = —1PL 24
" = BGralp)] @

where P[x] denotes the phase of the function x. Thus,
Figs. 5(a)-(b) show plots of Ry,, and R,,, for different
values of the microstrip parameters when (19) is satisfied.
The region of validity of the asymptotic solution is then
defined, similarly to (12), by a Radius R;, such that:

’M‘ < error forallp = R,,.. (26)
Gi(p)

Finally, in order to efficiently evaluate the moment method
generalized impedance matrix, we first compute the quasi-
dynamic radius R, and the asymptotic radius R, subject to.
a specified error tolerance. The Green’s functions G,(p)
and G,(p) are then evaluated using the closed form quasi-
dynamic solution for p < R, the numerical dynamic so-
lution [3], [10] for R, < p < R,, and finally the closed
form asymptotic solution [16] for p = R,. The numerical
dynamic solution is therefore evaluated only in the narrow
intermediate field regions. This results in a significant re-
duction in the computational time particularly in the anal-
ysis of electrically large structures [15] as most of the
computations occur in the region (p = R,).

2.3 Extraction of The Frequency Dependent Network
Parameters

As described in [1]-[2], in order to define a network
description of the microstrip circuit, we define a voltage
distribution in terms of the normal component of the elec-
tric field. The voltage distribution is thus given by [1]-
[3]. .

1861

120 —
& \
1.00 -
[3 "
b7
[
0.80
] // // &4
3
o 060
/ // Eri
0.40
0.20 /
0.00
0.01 0.13 0.25 0.38 0.50
Normalized Distance in 10
h=005 16 =20, 6,240, 8,=80 , &,=100, &,=160
(@
4.00
3.50 \
\arS
3.00 \
g 250
« \
200 €, \
&
150 ?
12
100 §\= ———
’ L* .
0.50
0.01 0.13 025 0.38 0.50
NonnalizedDistanceinkO

he0.05 &, =20, ¢,=40 , ,=80 , &,=100, & =160

(b

Fig. 5. (a) Shows a plot of the ratio (R,,,,) of the magnitude of the dynamic
G,(p) to the magnitude of the asymptotic G,,,(p) for different values of i
and ¢,. (b) Shows a plot of the ratio (Ry,,) of the phase of the dynamic
G,(p) to the phase of the asymptotic G,,,(p) for different values of 2 and
€,.

74
Ve, ) = —L— S dy'Qy(y")
drwe; Jw

a
: Sl——Jsx(x,)GZ(x7 v, x5y @7

ax'
From the voltage and current distributions, the frequency
dependent circuit parameters such as the [S], [Z], or
[ABCD] parameters can be readily obtained. Specifically,
we first define an N-port network by defining N reference
planes on the circuit. To illustrate, Fig. 6 shows such a
network of 4 signal conductors C1, C2, C3, and C4. The
N reference planes (P 1-P 8) are defined along the lengths
of the lines in the z direction. The network is then excited
at one end, quite far from the reference plane (d = 0.1
o). The obtained voltages and currents at the reference
planes are then denoted by (Vi1, Vip, * * * Vi, L1y, 112,
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Fig. 6. (a)-(b) Shows the 3-D 8 port network representation of a 4 con-
ductor microstrip transmission line.

-+« I;,). In total, the network is independently excited N
times, each time a set of voltages and currents at the N
reference planes is obtained. Thus denoting the set of
voltages and currents obtained from the ith excitation by

(I/“, I/iz, Tt I/ins Ii19 Ii25 T, Iin)’ the Z matrix of the
N port Network is obtained as:

_Zn— *In I, 0 0

Zln O(m‘hrow) 0 0 00

2y, Iy v b, 00

Zzn — 0 (2nthrow) O 0 O 0

an . Inl e Inn 0 0

Znn 0 (n2thtow) 0 0 0 0

The § parameters can be extracted from the Z parameters
using the transformation given by:

[S1 =[G + DI"'[z — D] 29
where [z] is the normalized [Z] matrix defined by
Z;
Zy = (30)

\ Zoi Zoj .
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Z,; being the characteristic impedance of the line at the
ith port and [/] being the identity matrix.

III. NuMEeRICAL EXAMPLES

3.1 Computation of the [S] Parameters of a Uniform
Two Conductor Transmission Line

In this example, we solve for the [S] parameters of a
uniform two conductor transmission line. The line geo-
metrical and electrical data are shown in Fig. 7. Four ports
are then defined quite far from the excitations (Fig. 7(a))
and the sets of voltages and currents at those ports are
obtained as described in the previous section. The [Z] pa-
rameters are then computed using (28). In order to obtain
the [S] parameters of the line, it is necessary to compute
the characteristic impedance at each port. The 3-D, fre-
quency dependent, characteristic impedance is computed
in the same manner as described in [1]. The [S] parame-
ters are then extracted from the [Z] parameters using (30).
In order to check the results of this 3-D modeling, the [S]
parameters are then computed using a 2-D approach. In
this 2-D approach, the line circuit parameters, that is the
inductance matrix [L], the electrostatic induction coeffi-
cients matrix [C], and the conductance matrix [G] are
computed using a two dimensional analysis of the circuit
board cross section [8], [9]. For different frequencies, it

, — R
O(n thcol) 1 V11

0 0
o I I en Vin
0 0 0 (n2thcol) Vz |
I b, Vo 28)
0 0 0 v,
Inl tte Inn Vnn
| L

is assumed that the inductance and electrostatic induction
coefficients matrices remain constant while the conduc-
tance matrix [G] varies linearly with frequency [17]. In
this 2-D analysis, the resistance matrix [R] of the line is
assumed to be zero and all ports are terminated by the 2-D
characteristic impedance of the line at the corresponding
port. The 3-D and 2-D [S] parameters are computed at 3,
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Fig. 7. (a) Shows the 3-D 4 port network representation of a 2 conductor
uniform microstrip transmission line. (b) Shows the 2-D quasi-TEM ap-

proximation of the circuit in Fig. 7(a).

4, and 5 GHz. These parameters are given by

f = 3.0 GHz.

(S1 %/lDag =

[S13te =

[ 0.2438E - 01
0.7326E — 01
0.9596E + 00
| 0.1191E + 00

[ 0.2347E — 01
0.7890E — 01
0.9569E + 00
| 0.1325E + 00

0.7326E — 01
0.2438E — 01
0.1191E + 00
0.9596E + 00

0.7890F -~ 01
0.2347E - 01
0.1325E + 00
0.9569E + 00

0.9602E + 00
0.1192E + 00
0.2419E — 01
0.7333E — 01

0.9569E + 00
0.1325E + 00
0.2347E —~ 01
0.7890E — 01

0.1192E + 00 |
0.9602E + 00
0.7333E - 01
0.2419E -~ 01_]

0.1325E + 00 |
0.9569E + 00
0.7890E ~ 01
0.2347E — 01_

0.2098E + 01]
—0.2608E + 01
—0.9656E + 00

0.2250E + 01_

—0.2608E + 01
0.2098E + 01
0.2250F + 01

—0.9656E + 00

0.2220E + 01
—0.9652E + 00
—0.2608E + 01
L. 0.2098E + 01

—0.9652E + 00
0.2220F + 01
0.2098E + 01

—0.2608E + 01

[S1im =

0.2073E + 01|
—0.2631F + 01
—0.9814F + 00

—0.2631F + 01
0.2073E + 01
0.2294E + 01

0.2249E + 01
—0.9814E + 01
-0.2631F + 01

—~0.9814F + 00
0.2294E + 01

§1D —
51 0.2073E + 01

L 0.2073F + 01 —0.2631E + 01 —0.9814E + 00  0.2294E + 01_

f=4.0GHz

H

[57 g

[S1ing =

[70.2813E — 01
0.6105E - 01
0.9446E + 00
| 0.1548E + 00

[0.2283E - 01
0.7364E — 01
0.9382E + 00
[_0.1788E + 00

0.6105E — 01
0.2183E — 01
0.1548E + 00
0.9446E + 00

0.7364E — 01
0.2283E — 01
0.1788E + 00
0.9382E + 00

0.9454F + 00
0.1549E + 00
0.2192E — 01
0.6113F — 01

0.9382E + 00
0.1788E + 00
0.2283F — 01
0.7364E — 01

0.1549E + 00 |
0.9454E + 00
0.6113E — 01
0.2192E — 01_]

0.1788E + 00 |
0.9382E + 00
0.7364E — 01
0.2283E — 01|
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[S13h =

[S13m =

[S1ing =

N
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0.2683E + 01
| 0.1093E + 01

[ 0.7125E + 00
0.9604E + 00
0.2642E + 01

| 0.1051E + 01

5.0 GHz

[ 0.1925E — 01
0.1165E + 00
0.9301E + 00
[ 0.1716E + 00

[ 0.2013E — 01
0.1377E — 01
0.9187E + 00
|_0.2046E + 00

0.1093E + 01
0.2683E + 01

0.9604E + 00
0.7125E + 00
0.1051F + 01
0.2642F + 01

0.1165E + 00
0.1925E — 01
0.1716F + 00
0.9301E + 00

0.1379E + 00
0.2013E — 01
0.2046F + 00
0.9187E + 00

[ 0.8850E + 00 0.9946E + 00 0.2683E + 01 0.1097E + 01|
0.9946E + 00 0.8850E + 00 0.1097E + 01 0.2683E + 01

0.9010E + 00
0.1005E + 01

0.2642F — 01
0.1051F + 00
0.7125F + 00
0.9604E + 00

0.9309E + 00
0.1712E + 00
0.1943E — 01
0.1170E + 00

0.9187E + 00
0.2046F + 00
0.2013E — 01
0.1377E + 00

0.1005E + 01
0.9010E + 00_l

0.1050E + 00|
0.2642E + 01
0.9604E + 00

0.7125F + 00

)

0.1712E + 00
0.9309E + 00
0.1170F + 00
0.1943E — 01_]

0.2046E + 00
0.9187E + 00
0.1377E + 00

0.2013E - 01

[ —0.9272F - 01
0.4447E + 00
0.2060E + 01
| 0.4696E + 00

0.4447F +
—-0.9272E —
0.4696F -+
0.2060FE +

[S1pm =

[ —0.8049E + 00
0.4081E + 00
0.2006E + 01
| 0.4176E + 00

0.4081E +
—0.8049E +
0.4176E +
0.2006E +

[S1om =

As can be seen from the above matrices, there is a good
agreement between the 2-D and 3-D solutions. It is inter-
esting to note however, that in the 2-D analysis, the line
is 1.6 cms long and is terminated by its characteristic
impedance at each port. The line is thus very closely
matched. Its behavior is very close to the infinitely long
line. In the 3-D analysis however, and due to the choice
of basis functions, the current terminates at the line ends
presenting an effective infinite impedance. Therefore, in
order to have a meaningful comparison between the 3-D
and 2-D results, the line ends and excitations must be quite
far from the ports in the 3-D case (Fig. 7). In this partic-
ular problem, for the 3-D case, the line length is chosen
to be 4.0 cms. The ports however, are 1.6 cms apart,
symmetrically located from the line ends. This partially
accounts for the small difference between the 2-D and 3-D
results. It is also interesting to note that, as expected, the
agreement is better at lower frequencies since the static

00
01
00
01

00
00

0.2060FE + 01
0.4722E + 00
—0.5139E ~ 01
0.4509E + 00

0.2006E + 01
0.4176E + 00

0.4722E + 00 ]
0.2060E + 01
0.4509E + 00
—0.5139E ~ 01

—

0.4176F + 00
0.2006E + 01

00 —0.8049E + 00
01 0.4081F + 00

0.4081F + 00
—0.8049E + 00_

solution is a good approximation of the dynamic solution
at lower frequencies. The slight asymmetry in the 3-D
results are due to the numerical errors incurred in the
computation of the voltage and current distributions as
well as in the extraction of the circuit parameters.

3.2 Computation of The [S] Parameters of a Tapered
Two Conductor Transmission Line

In this example we solve for the [S] parameters of a
tapered two conductor transmission line. The line has the
same length as the two conductor line of the previous sec-
tion (4 cms). Its geometrical and electrical data are shown
in Fig. 8. A 4-port network is then defined by 4 reference
planes 1.6 cms apart and symmetrically located from the
port ends. The 3-D frequency dependent [S] parameters
of the line are then calculated exactly as described in the
previous section. In order to check the results in this case
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Fig. 8. (a) Shows the 3-D 4 port network representation of a 2 conductor
tapered microstrip transmission line. (b) Shows the 2-D quasi-TEM ap-

proximation of the circuit in Fig. 8(a).

however, the line is approximated by a cascade of four
uniform lines L1, L2, L3, and L4. The lines have differ-
ent separations S1, S2, §3, and S4 (Fig. 8(b)). The length
of each section is one fourth of the total length of the line
(0.4 cms). The 2-D frequency dependent line-circuit pa-
rameters [L], [C], and [G] of each section are then com-

F=3GHz

puted as described in the previous section. The 2-D [§]
parameters of the line are then computed from the indi-
vidual [S] parameters of each section using standard net-
work theory. The 3-D and 2-D frequency dependent S pa-
rameters are computed at 3, 4, and 5 GHz. They are given
by

[S130g =

(1 ¥ag

N

i

[ 0.3671E — 02
0.3018E — 01
0.9663E + 00
[ 0.7623E — 01

[ 0.3317E - 02
0.3890F - 01
0.9646E -+ 00
| 0.8874E - 01

0.3018E — 01
0.3671E — 02
0.7623E — 01
0.9663E + 00

0.3800E — 01
0.3318E — 02
0.8874E — 01
0.9646E + 00

0.9669E + 00
0.7642E — 01
0.7253E — 02
0.2925E - 01

0.9646E + 00
0.8874E — 01
0.9832E — 02
0.3705E — 01

0.7642E — 01 |
0.9669E + 00
0.2925E — 01
0.7253E — 02_]

0.8874E — 01 |
0.9646E + 00
0.3705E — 01

0.9833E — 02

0.1240F + 01
—0.3442F + 00
—0.2625E + 01
. 0.2082FE + 01

0.1786F + 01

—0.3442E + 00
0.124F + 01
0.2082E + 01

—0.2625E + 01

—0.2130E + 00

—0.2625E + 01
0.2061F + 01
0.1302F + 01

—0.1717E + 01

—0.2649E + 01

0.2061E + 01 |
—0.2625E + 01
—0.1717E + 01

0.1302E + 01

0.2047E + 01|

—0.2130L + 00
—0.2649E + 01
L 0.2047F + 01

[S15h =

F =4GHz

0.7891E — 02 0.2357E — 01
0.2357E — 01 0.7891E — 02
0.9573E + 00 0.9166E — 01
0.9166F — 01 0.9573E + 00

[S136e =

0.1786E + 01
0.2047E + 01
—0.2649E + 01

—0.2649F + 01
—0.1891F + 01
0.1492F + 01

0.2047E + 01
0.1492F + 01
—0.1891E + 01

0.9575E + 00
0.9179E - 01
0.1009E — 01
0.2049E — 01

0.9179F — 01
0.9575E + 00
0.2049E — 01
0.1009E — 01
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0.5214E — 02 0.3488E — 01 0.9532E + 00 0.1138E + 00
. 0.3488E — 01 0.5214E — 02 0.1138E + 00 0.9532E + 00
(SThee = | 9530E + 00 0.1138E + 00 0.9206E — 02 0.3098E — 01
| 0.1138E + 00 0.9532E + 00 0.3099E — 01 0.9208E — 02_
[0.1685E + 01 0.5589E + 00 0.2888E + 01 0.1301E + 01|
. 0.5589E + 00 0.1685E + 01 0.1301E + 01 0.2888E + 01
5Tk = | 2888E + 01 0.1312F + 01 0.1183E + 01 0.2006E + 01
| 0.1312E + 01 0.2888E + 01 0.2006E + 01 0.1183E + 01
0.2205E + 01 0.4397E + 00 0.2846E + 010.1262E + 01
. 0.4397E + 01 0.2205E + 01 0.1262E + 010.2846E + 01
ISTha = | 2846E + 01 0.1262E + 01 02082 + 010.2082F + 01
| 0.1262E + 01 0.2846E + 01 0.2082E + 010.9590E + 00
F=5GHz
0.7048E — 02 0.4577E — 01 0.9470E + 00 0.1086E + 00|
. 0.4577E — 01 0.7048E — 02 0.1086E + 00 0.9470E + 00
(5T 3veg = 0.9449E + 00 0.1079E + 00 0.4056E — 02 0.4367E + 01
| 0.1079E + 00 0.9449E + 00 0.4367E — 01 0.4056E — 02_]
0.5580E — 01 0.6218E — 01 0.9386E + 00 0.1406E + 00
. 0.6218E — 01 0.5581E — 02 0.1406E + 00 0.9386E + 00
1106 = | 9386E + 00 0.1406E + 00 03419E — 02 0.5839E — 01
| 0.1406E + 00 0.9386E + 00 0.5839E — 01 0.3418E — 02_
0.2067E + 01 0.3745E + 00 0.2043E + 01 0.4678E + 007]
o 0.3745E + 00 0.2067E + 01 0.4678E + 00 0.2043E + 01
51%0 = 1 0 2044E + 01 04681E + 00 0.1846E + 01 0.5530E -+ 00
| 0.4681E + 00 0.2044E + 01 0.5530E + 00 0.1846E + 01_
0.1934E + 01 0.2880E + 00  0.1987E + 01  0.4032E + 00
spe - 0.2880E + 00 0.1934E + 01  0.4032E + 00  0.1987E + 01
0.1987E + 01 0.4032E + 00 —0.3218E + 00  0.5316E + 00
|_0.4031E + 00 0.1987E + 01  0.5317E + 00 —0.3224E + 00

As can be seen from the above matrices the agreement
between the 3-D and 2-D results is reasonable.

3.3 Computation of the [S] Parameters of a Half Circle
Line

In this section we compute the [S] parameters of a non-
uniform transmission line structure consisting of a 1.5
inches long uniform section, a 0.5 inches radius half cir-
cle section, and finally a 1.5 inches long uniform section.
The line width in this case is 20 mils and the dielectric
constant is 10.2 — j0.25. The geometrical and electrical
data are shown in Fig. 9, Before the computation of the

frequency dependent [S] parameters of this structure how-
ever, we first compute the real part of the propagation
constant and thus study the effect of the losses on the line.
For this purpose we define two ports, quite far from the
excitation and from the half circle discontinuity. The fre-
quency dependent [Z] parameters of the two ports are then
computed using (28) and the real part « of the propagation
constant is extracted from the [Z] parameters. The real
part of the propagation constant is then computed using a
2-D analysis by treating the line as a uniform infinite line.
Fig. 10 shows a comparison between the 3-D and 2-D
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Fig. 9. Shows the 3-D 2 port network representation of a half circle mi-
crostrip transmission line.

0.8

0.7 [

0.6 Tt
0.5 L %/
' e

0.4

Attenuation Factor o

0.3

vl

0.2 d
4;//

0.1

20 10’ 35 10° 50 10° 65 10° 8,0 10°

Frequency In Hertz
Diamond.. 2D solution ,  Circle..3D Dynamic Solution

Fig. 10. Shows a comparison between the 3-D dynamic and the 2-D quasi-
TEM computation of the frequency dependent attenuation factor o of the
line in Fig. 9.

computation of «. The results are almost identical up to
6 GHz and then the 3-D analysis starts predicting higher
losses. This is expected due the radiation losses and the
finite length of the line resulting in a finite load at the line
ends. We next compute the frequency dependent [S] pa-
rameters between ports 1 and 2 by first computing the [Z]
parameters and then using equation (28). Thus Fig. 11
shows a comparison between the [S] parameters obtained
using this 3-D analysis and the experimental data obtained
from the HP8510A Network Analyzer. The discrepancy
in the magnitude of [S;,] and [S,;] is about 1.5 dB when
the frequency of operation is such that the structure is ap-
proximately 10 wavelengths which is about the expected
copper loss for this structure.

IV. CoNcLusION

A new technique, based on a combined approach of us-
ing closed form near and far field approximations for the
Sommerfeld microstrip Green’s functions has been pre-
sented. In this technique, the accuracy of the approxi-
mations can be set to any desired value. The dynamic
Green’s functions are evaluated numerically only in the
narrow intermediate field regions resulting in a significant
reduction of computational time. Finally to check the ac-
curacy of this new technique, several numerical examples
have been solved and checked with avallable data and with
experiment.
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Fig. 11. Shows a comparison between the 3-D theoretical results and the
experimental results for the frequency dependent S, parameter of the line
in Fig. 9.
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