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Abstract—The objective of this paper is to present a numeri-
cal technique based on a combined approach of using a “quasi-

dynamic, ” a “dynamic” and an asymptotic approach for the
analysis of nonuniform microstrip transmission lines and dis-

continuities using the grounded dielectric slab Green’s func-
tions. The regions of validity of the quasi-dynamic and asymp-

totic approximations have been determined in terms of the
required accuracy in the Green’s functions. Finally, numerical

examples have been presented and checked with available data

to chick the accuracy of this new technique.

I. INTRODUCTION

~ HIS PAPER describes an Electric Field Integral

1 Equation Formulation (EFIEF) for the dynamic char-

acterization of nonuniform microstrip transmission lines

and discontinuities. In the dynamic approach, the Green’s

functions are Sommerfeld type integrals that can be eval-

uated only numerically. The crucial element to a numer-

ical advantage of the EFIEF therefore, lies in the efficient

computation of the Green’s functions, particularly in the

analysis of electrically large structures. In this paper, the

quasi dynamic approximation [1]-[3] has been used for

the near field and the asymptotic steepest descent approx-

imation for the far field calculations. The regions of va-

lidity of the quasi-dynamic and asymptotic approxima-

tions are determined in terms of the microstrip physical

parameters and the required accuracy.

Section II of this paper deals with the moment method

formulation of the problem. For multi-conductor trans-

mission lines, a new approach of utilizing the transversal

quasistatic distribution for the transversal component of

the current has been described.

Section III deals with the circuit parameters extraction

from the current and voltage distributions. Several ex-

amples have been solved in order to demonstrate the use-
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fulness of the technique.

sented in Section IV.

Finally the conclusion is pre-

11. MOMENT METHOD FORMULATION

For the most general planar structures, the current dis-

tribution is a two dimensional current with both longitu-

dinal and transversal flows. For most transmission lines-

like structures however, the transversal component of the

current is negligible compared to the longitudinal com-

ponent and the current may be assumed to flow in the ax-

ial direction only [1], [4]. Such an assumption leads to a

considerably more efficient moment method solution as it

substantially reduces the generalized impedance matrix

size. Thus considering the micro strip multi-conductor

transmission line of Fig. 1, the current distribution on each

metallic conductor may be written as:

N

where T, (x’) is a triangular element defined as

\
elsewhere

o J

Here it was assumed that the current element is locally

oriented in the I direction and the origin of the coordi-

nates coincide with the mid point of the interval [ –X2, Xz]

over which the current element is defined (Fig. 2). The

transversal current distribution Q, ( y’ ) is assumed to be

known, The moment method generalized impedance ele-

ments for such distribution can be written as [1], [2]

I[CIG1(X> y,X’, yr)~n(X’)~m(X,) 2X - Z?x,]

+ C2G2(X, y, X’, y’)
* 1
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Fig. 1. Shows a 3 conductor microstrip transmission line where W is the
line width, S is the separation between conductors, t is the conductor thick-
ness, h is the dielectric height and e is the complex dielel:tric constant.

T(x)

-x2 -xl o xl x2

Fig. 2. Shows the triangular basis functions for the longitudinal compo-
nent of the current distribution.

where G1 and G2 are the Sommerfeld type Green’s func-

tions of the problem and Cl, C2, G1, G2 have been given

in [1], [5]. For completeness, they are also given in Ap-

pendix A. The generalized voltage vector elements are

given by

~ = (Ei; Qj(y ’) Tj(x’)). (3)

The transversal current distribution Qi ( y’ ) depends on the

microstrip geometrical data. Thus for a singlte narrow line,

that is a line such that (W/H) is small (typically, (iV/H)

s O. 1), the transversal current distribution has a square

root behavior [1, 4, 6] and can be replaced with a cylin-

drical wire of equivalent radius (a = [W/4]) [7]. The cur-

rent may thus be assumed filamentary and flowing in the

axis of the cylinder only. The boundary condition of zero

tangential electric field is then applied at the surface of

the cylindrical wire. For such a distribution, the gener-

alized impedance matrix elements may be further simpli-

fied to:

P P

—

1G2(x, y,x’, y’)
[ u-&Tn(x’) + & Tm(xj) “

,/

For microstrip lines where (W/H) is large (typically,

(lV/H) a 1), the transversal current distribution is ap-

proximately constant over the strip width [1.], [2], [6]. It

may thus be written as:

For the intermediate region, the current distribution is as-

sumed to follow the square root behavior. Therefore, for

a single microstnp line, the transversal current distribu-

tion may be assumed known for all values of (W/H). For

a multi-conductor line however, the transversal current

distribution on each of the lines can no longer be approx-

imated by a square root or a constant distribution due to

the edge effects. The transversal distribution also depends

on the location and number of excited lines. For example

Figs. 3(a)-(c) show the current distribution on the three

microstrip line of Fig. 1 for different values of (W/H)

and different spacings (S/ W). In these plots, the current

distributions for conductors 1, 2, and 3 have been plotted

on the intervals [0–20], [30–50], and [60–80] respec-

tively. It is obvious from these figures that the square root

behavior is not valid, particularly on the lines adjacent to

the excited line except for very large (S/ W) (typically

(S/ W) > 10). Thus if the spacing is very large and

(lV/H) is small, the lines may be approximated by wires

of equivalent radii equal to (1 /4) of the strip widths. If

(lV/H) and (S/W) are both large, the current distribution

may then be assumed constant on all lines. For the most

general case, that is an arbitrary (W/H) and arbitrary

(S/ W), the transversal current distribution is obtained by

solving the equivalent 2D problem involving the charge

distribution [8], [9]. The equivalence of the charge and

current distributions for the uniform, infinite length,

multi-conductor transmission line has been shown in [9].

The exact numerical evaluation of the dynamic Green’s

functions involves a numerical computation of Sommer-

feld type integrals [3], [10], [1 1]. The location of the ze-

ros of the TE and TM microstrip transcendental equations

have to be very accurately determined [12], [13] and ex-

tracted from the integrands. In this paper a combined

(Newton-Raphson, bisection root) search has been unu-

tilized to locate the zeros to within any specified accu-

racy. The numerical integration is then performed in es-

sentially the same manner as described in [3], [10], [11].

2.1 The Quasi-Dynamic Approximation for the Green’s

Functions

In this paper, the quasi-dynamic approximations GI~

and G2~ are defined as

Gq (P) = ::0 G(P) (5)

and are thus given by [1], [2], [3], [10]:

~ –jk I YO e –k{r!

Gq(P) = -y – —
rl

{

e –j!a n

G2q(P)= (1 – n) y -(l+q)

(6)

(7)

(4) (8)
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Fig. 3. (a)-(c) Shows a comparison between the normalized transversal

distribution of the longitudinal current on each of the 3 conductors of Fig.
1 andthesquare root distribution. [0-20] Conductorl, [30-50] Conductor
2, [60-80] Conductor.

l–c,

~=l+er
(9)

r=-. (lo)

When the substrate height h is very small compared to

both, the wavelength of operation and the source-to-field
distance (p), Gl~ may be written as

~–jklrn

G1~(P) = 2jh2kl ~ + higher order terms. (11)

In this paper we define the region of validity of the quasi-

dynamic approximation Gi~ ( p) by the radius (RiJ such

that

G(P) – %q(P)
s error for all p < Riq

Gi (p)
(12)

where error is any specified error tolerance. To illustrate,

Figs. 4(a)-(b) show Rlq and Rzq as functions of the sub-
strate heights h for different values of ~, and an error tol-

erance of 0.05. It should be noted, that the quasi-dynamic

approximations may as well be defined in terms of k2 or
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I 1 I I0.6 2.2 The Asymptotic Approximation

The asymptotic approximations Gla ( p) and Gaa ( p) for

Gl(p) and Gz(p) are defined as

G1. (P) = ~+mm G(P) (16)

Gza (P) = Iim G2(P) (17)
,0+’X

and though they are defined in the limiting sense as p -+
eJ, they are generally valid to an excellent accuracy for p

greater than a fraction of a free space wavelength for most

practical microstrip circuits [15]. In this paper, the

asymptotic solution is obtained by deforming the path of

integration in Gl( p) and G2( p) to the path of steepest de-

scent and using the first order approximation for the Han-

kel function, namely

r

2
lim Hi ( Ap) = — ~ –jAp ~j(rr/4)

(Ap)+cc
(18)

7rAp

A detailed description for the derivation of the general

expressions for G1. ( p) and G2( p) can be found in [16].

For completeness, the general expressions for G1. ( p) and

Gz. ( p) are given in the Appendix. For the special case
when the frequency of operation is such that

f= co (19)
4h ~

where co is the speed of light in air, DTE has no poles on

the real axis while Z)~~ has only one pole [12], [13]. The

expressions for Gla ( p) and G2. ( p) then reduce to

0.5
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Fig. 4. (a)-(b) Shows the radius Rjq of the region of validity of the quasi-

dynamic approximation for different values of h and e,.

as defined in [14] by

~ –jkro ~ –jkn

G1~2=—– —
r. rl

+1

G2. =

[

AITM 11+(1–j)~ —
bl,M k1p2

+ higher order terms

~

[

~ –jk?l i=m

G2~z=(l–q) —– (1 + ‘q) i;l (–q)(i”l)@
rl ri 1

where the parameters of the above equations are given in(14)

where the wave number k is defined by
the Appen~ix. It is interesting to no~e that the p~ase be-

havior of the asymptotic solution predicted by (20) is the

same as the phase predicted by (11). From this it can be

concluded that the phase term of the quasi-dynamic ap-

proximation (11) is valid for all distances (p) at the inter-

face when the substrate height (h) is small compared to

the wavelength of the frequency of operation. Further-

e (15)-jk’ = COS (kl r) + j sin (k2 r)

and k2 is the wave number in medium 2. The definition

given by (7) and (8) however, seems to yield the largest

region of validity.
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more, it was observed in [1] that the quasi-dynamic phase

is more accurate, at the interface, in the far field than in

the near field. Thus toobtain amore accurate asymptotic

representation than (20) we define

–2j tan2 (kl h m) e -jklp
G1a2=

er—l k1p2

where Im (x) denotes the imaginary part of x. Thus G1.2(P)

has the same magnitude as G1. ( p) but a different phase.

The phase of GI.2( p) however, is more accurate than that

of Gla ( p). Both equations (20) and (22) have been com-

pared to the dynamic solution for a range of values of h
and ~, such that (19) is satisfied and in all cases, it was

found that (22) is a better approximation for the dynamic

solution than (20). To investigate the accuracy of the

asymptotic solution GI.2( p), we compare it to the dy-

namic solution G1( p). For this purpose, we define:

Gl(p)
RIM = —

G72(P)

PIG1(p)]

‘lP’ = P[G1a2(p)]

(23)

(24)

where P[x] denotes the phase of the function x. Thus,

Figs. 5(a)-(b) show plots of Rlma and R,Pa for different

values of the microstrip parameters when (19) is satisfied.

The region of validity of the asymptotic solution is then

defined, similarly to (12), by a Radius Ria such that:

Gi(p) – Gia(p)
< error for all p ~ Ria.

Gi (p)
(26)

Finally, in order to efficiently evaluate the moment method

generalized impedance matrix, we first compute the quasi-

dynamic radius Rq and the asymptotic radius R. subject to

a specified error tolerance. The Green’s functions GI (p)
and G2( p) are then evaluated using the closed form quasi-

dynamic solution for p s Rq, the numerical dynamic so-

lution [3], [10] for Rq s p < Ra, and finally the closed

form asymptotic solution [16] for p z Ra. The numerical

dynamic solution is therefore evaluated only in the narrow

intermediate field regions. This results in a significant re-

duction in the computational time particularly in the anal-

ysis of electrically large structures [15] as most of the

computations occur in the region (p a Ra).

2.3 Extraction of The Frequency Dependent Network

Parameters

As described in [1]-[2], in order to define a network

description of the microstrip circuit, we define a voltage

distribution in terms of the normal component of the elec-

tric field. The voltage distribution is thus given by [l]-

[3].
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Fig. 5. (a) Shows a plot of the ratio (R,,..) of the magnitude of the dynamic

Gl( p) to the magnitude of the asymptotic Gld2( p) for different values of h

and e,. (b) Shows a plot of the ratio (RIP<,) of the phase of the dynamic

G,(p) to the phase of the asymptotic G,a2( o) for different values of h and
c,.

jI
V(x, y) = —

~47VJX~ w
@’Qy(Y)

“s
~ & J~X(x’)G2(x, y, X’, Y’). (27)

From the voltage and current distributions, the frequency

dependent circuit parameters such as the [S], [Z], or

[ABCD] parameters can be readily obtained. Specifically,

we first define an N-port network by defining N reference
planes on the circuit. To illustrate, Fig. 6 shows such a

network of 4 signal conductors C 1, C2, C3, and C4. The

N reference planes (1?1-P 8) are defined along the lengths

of the lines in the z direction. The network is then excited

at one end, quite far from the reference plane (d > 0.1
AO). The obtained voltages and currents at the reference

planes are then denoted by (Vll, V12, . “ “ Vi., Zll, Zlz,
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ZOi being the characteristic impedance of the line at the

i th port and [Z] being the identity matrix.

III. NUMERICAL EXAMPLES

3.1 Computation of the [SJ Parameters of a Uniform
Two Conductor Transmission Line

In this example, we solve for the [S] parameters of a

uniform two conductor transmission line. The line geo-

metrical and electrical data are shown in Fig. 7. Four ports

are then defined quite far from the excitations (Fig. 7(a))

and the sets of voltages and currents at those ports are

obtained as described in the previous section. The [Z] pa-

rameters are then computed using (28). In order to obtain

the [S] parameters of the line, it is necessary to compute

the characteristic impedance at each port. The 3-D, fre-

quency dependent, characteristic impedance is computed

in the same manner as described in [1]. The [S] parame-

ters are then extracted from the [Z] parameters using (30).

In order to check the results of this 3-D modeling, the [S]

parameters are then computed using a 2-D approach. In

this 2-D approach, the line circuit parameters, that is the

inductance matrix [L], the electrostatic induction coeffi-

cients matrix [C], and the conductance matrix [G] are

computed using a two dimensional analysis of the circuit

board cross section [8], [9]. For different frequencies, it

w s
z

1~
c1 C2 — C3 C4

Y
.

~h

I
x

(a)

z direction

PI P2

r , !

P3 P4

1 !

P5 P6

[ ,

P7 Pa

I , (

(b)

Fig. 6. (a)-(b) Shows the 3-D 8 port network representation of a 4 con-
ductor microstrip transmission line.

“ “ “ llJ. In total, the network is independently excited N

times, each time a set of voltages and currents at the N

reference planes is obtained. Thus denoting the set of

voltages and currents obtained from the i th excitation by

(Vii, Viz, “ “ “ , Vin, Iii, li2, “ “ - , Iin), the .zmatrix of the

N port Network is obtained as:

v,,

J“ln

v~ ,

‘2.

Vn*

v nn

—

-z, ;

Z,n

Z21

‘2.

Zn,

—
I,,

o (nth row)

12~

0 (2nth row)

1nl

.

~ (n 2fh row)

. . . I ,.00 0 . . . () (n%hcol)- -10

.

0

0

. . .

0

. . .

. . .

. . .

. . .

. . . z~”h‘O1)o 000 I 11

. . . 0 (n’thcol). . . Zzn o 0 0

. . .

. . .

. . .

0 000 12, . . . 12n (28)—

. .

. .

. .

. .

. .

. .

. . . I .noo o . . . 0

1’z an

—

. . .

. . .
. . . .

0 000 Zn, . . . zm

—

The S parameters can be extracted from the Z parameters

using the transformation given by:

[s] = [(z + Z)]-l[(Z –

where [z] is the normalized [Z] matrix

20

‘g = G

is assumed that the inductance and electrostatic induction

coefficients matrices remain constant while the conduc-

tance matrix [G] varies linearly with frequency [17]. In

this 2-D analysis, the resistance matrix [R] of the line is

assumed to be zero and all ports are terminated by the 2-D

characteristic impedance of the line at the corresponding

port. The 3-D and 2-D [S] parameters are computed at 3,

z)] (29)

defined by

(30)
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Fig. 7. (a) Shows the3-D4pofi network representatiorL ofa2 conductor

uniform microstrip transmission line. (b) Shows the 2-ID quasi-TEM ap-

proximation of the circnit in Fig. 7(a).

4,and5GHz. These parameters are given by

~ = 3.0 GHz.

$Z02D
.

[

0.2438E – 01 0.7326E – 01 0.9602E + 010 0.1192E + 00

0.7326E – 01 0.2438E – 01 0.1192E + 010 0.9602E + 00
[s] ;;g =

0,9596E + 00 0.1191E + 00 0.2419E – CI1 0.7333E – 01

0.1191E -t 00 0.9596E + 00 0.7333E – Cll 0.2419E – 01 1

[

0.2347E -01 0,7890E – 01 0,9569E + CIO 0.1325E + 00

0.7890E -.01 0.2347E – 01 0.1325E + 00 0.9569E + 00
[s] wag =

0,9569E + 00 0,1325E + 00 0.2347E – 01 0.7890E – 01

0.1325E + 00 0.9569E -t- 00 0.7890E – 01 0.2347E – 01 1

[

0.2220E + 01 –0.9652E + 00 –0.2608E + 01 0.2098E + 01

–0.9652E + 00 0.2220E + 01 0,2098E + 01 –0.2608E + 01
[s] ;~, =

–0.2608E + 01 0.2098E + 01 0,2250E + 01 –0.9656E + 00

0.2098E + 01 –0.2608E + 01 –0.9656E + 00 0.2250E + 01I
[

0.2249E + 01 –0.9814E + 00 –0.263!LE + 01 0.2073E + 01

–0.9814E + 01 0.2294E + 01 0.2073E + 01 –0.2631E + 01
[s] $;, =

–0.2631.E + 01 0.2073E + 01 0.2294E + 01 –0.9814E + 00

0.2073E + 01 –0.2631E + 01 –0.9814E + 00 0.2294E + 01 1

f = 4.0 GHz

[

0.2813E -01 O.61O5E – 01 0.9454E + 00 0.1549E + 00-

O.61O5E -01 0.2183E – 01 0.1549E + 00 0.9454E + 00
[s] ;:g =

0.9446E + 00 0.1548E + 00 0.2192E – 01 0.6113E – 01

0.1548E + 00 0.9446E + 00 0.6113E – 01 0.2192E – Ol_

[

0.2283E – 01 0.73~E – 01 0.9382E + 00 0.1788E + 00

0.7364E – 01 0.2283E – 01 0.1788E + 00 0.9382E + 00
[s] %ag =

0.9382E + 00 0.1788E + 00 0.2283E – 01 0.7364E – 01

0.1788E + 00 0.9382E + 00 0.7364E – 01 0.2283E – 01 1
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[

0.8850E + 00 0.9946E + 00 0.2683E + 01 O.1O97E + 01

0.9946E + 00 0.8850E + 00 O.1O97E + 01 0.2683E + 01
[s] ;:. =

0.2683E + 01 O.1O93E + 01 O,9O1OE + 00 O.1OO5E + 01

O.1O93E + 01 0.2683E + 01 O,1OO5E + 01 O.9O1OE + 00 1

[

0.7125E + 00 0.9604E + 00 0.2642E – 01 O.1O5OE + 00-

0.9604E + 00 0.7125E + 00 O.1O51E + 00 0.2642E + 01
[s] ;:. =

0.2642E + 01 O.1O51E + 01 0.7125E + 00 0.9604E + 00

O.1O51E + 01 0.2642E + 01 0.9604E + 00 0.7125E + 00.

f = 5.0 GHz

[

0.1925E – 01 0.1165E + 00 0.9309E + 00 0.1712E + 00-

0.1165E + 00 0.1925E – 01 0.1712E + 00 0.9309E + 00
[s] ~ag =

0.9301E + 00 0.1716E + 00 0.1943E – 01 0.1170E + 00

0.1716E + 00 0.9301E + 00 0.1170E + 00 0.1943E – Ol_

[

0.2013E – 01 0.1379E + 00 0.9187E + 00 0.2046E + 00

0.1377E – 01 0.2013E – 01 0.2046E + 00 0,9187E + 00

0.9187E + 00 0.2046E + 00 0.2013E – 01 0.1377E + 00

0.2046E + 00 0.9187E + 00 0.1377E + 00 0.2013E – 01 1

[

–0.9272E – 01 0.4447E + 00 0.2060E + 01 0.4722E + 00-

0.4447E + 00 –0.9272E – 01 0.4722E + 00 0.2060E + 01

0.2060E + 01 0.4696E + 00 –0,5139E – 01 0.4509E + 00

0.4696E + 00 0.2060E + 01 0.4509E + 00 –0.5139E – Ol_

[

–O. 8049E + 00 0.4081E + 00 0.2006E + 01 0.4176E + 00

0.4081E + 00 –0.8049E + 00 0.4176E + 00 0.2006E + 01
[s] %, =

0.2006E + 01 0.4176E + 00 –0.8049E + 00 0.4081E + 00

0.4176E + 00 0.2006E + 01 0.4081E + 00 –0.8049E + 001
As can be seen from the above matrices, there is a good

agreement between the 2-D and 3-D solutions. It is inter-

esting to note however, that in the 2-D analysis, the line

is 1.6 cms long and is terminated by its characteristic

impedance at each port. The line is thus very closely

matched. Its behavior is very close to the infinitely long

line. In the 3-D analysis however, and due to the choice

of basis functions, the current terminates at the line ends

presenting an effective infinite impedance. Therefore, in

order to have a meaningful comparison between the 3-D

and 2-D results, the line ends and excitations must be quite

far from the ports in the 3-D case (Fig. 7). In this partic-

ular problem, for the 3-D case, the line length is chosen

to be 4.0 cms. The ports however, are 1.6 cms apart,

symmetrically located from the line ends. This partially

accounts for the small difference between the 2-D and 3-D

results. It is also interesting to note that, as expected, the

agreement is better at lower frequencies since the static

solution is a good approximation of the dynamic solution

at lower frequencies. The slight asymmetry in the 3-D

results are due to the numerical errors incurred in the

computation of the voltage and current distributions as

well as in the extraction of the circuit parameters,

3.2 Computation of The [S] Parameters of a Tapered

Two Conductor Transmission Line

In this example we solve for the [S] parameters of a

tapered two conductor transmission line. The line has the

same length as the two conductor line of the previous sec-

tion (4 ems). Its geometrical and electrical data are shown

in Fig. 8. A 4-port network is then defined by 4 reference

planes 1.6 cms apart and symmetrically located from the

port ends. The 3-D frequency dependent [S] parameters

of the line are then calculated exactly as described in the

previous section. In order to check the results in this case
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Fig. 8, (a) Shows the 3-D 4 port network representation of a 2 conductor

tapered m[crostrip transmission line. (b) Shows the 2-D quasi-TEM ap-
proximaticm of the circuit in Fig. 8(a).

however, the line is approximated by a cascade of four puted as described in the previous section. The 2-D [S]
uniform lines L 1, L2, L 3, and L4. The lines have differ- parameters of the line are then computed from the indi-
ent separations S 1, S2, S 3, and S4 (Fig. 8(b)). The length vidual [S] parameters of each section using standard net-
of each section is one fourth of the total length of the line work theory. The 3-D and 2-D frequency dependent S pa-
(0.4 ems). The 2-D frequency dependent line-circuit pa- rameters are computed at 3, 4, and 5 GHz. They are given.-
rameters [L], [C], and [G] of each section are then corn- by

F’=3GHZ

[

0.3671E --02 0.3018E – 01 0.9669E + 00

0.3018E --01 0.3671E – 02 0.7642E – 01
[s] j:g =

0.9663E + 00 0.7623E – 01 0.7253E – 02

0.7623E --01 0.9663E + 00 0.2925E – 01

[

0.3317E --02 0.3890E – 01 0.9646E -t- 00

0.3890E --01 0.3318E – 02 0.8874E – 01
[s] %ag =

0.9646E + 00 0.8874E – 01 0.9832E – 02

0.8874E --01 0.9646E + 00 0.3705E – 01

0.7642E – 01-

O.9669E + 00

0.2925E – 01

0.7253E – 02.

0.8874E – 01-

O.9646E + 00

0.3705E – 01

0.9833E – 02-

[

0.1240E + 01 –0.3442E + 00 –0.262.5E + 01 0.2061E + 01

–0.3442E + 00 0.1204E + 01 0.2061E + 01 –0.2625E + 01
[s] ;;, =

–0.2625E + 01 0.2082E + 01 0.1302E + 01 –o. 1717E + 01

0.2082E + 01 –0.2625E + 01 –0.1717E + 01 0.1302E + 01 1

[

0.1786E + 01 –0.2130E + 00 –0.2649E + 01 0.2047E + 01

–0,2130E + 00 0.1786E + 01 0.2047E + 01 –0.2649E + 01
[S]fla =

–0.2649E + 01 0.2047E + 01 0.1492E + 01 –0,1891E + 01

0.2047E + 01 –0.2649E + 01 –0.1891E + 01 0.1492E + 01 1

F=4GHZ

[

0.78!11E – 02 0.2357E – 01 0.9575,E + 00 0.9179E – 01

1

0.2357E – 01 0.7891E – 02 0.9179E – 01 0.9575E + 00
[s] & =

0.95’73E + 00 0.9166E – 01 O.1OO9E – 01 0.2049E – 01

0.91(56E – 01 0.9573E + 00 0.2049E – 01 O.1OO9E – 01
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[

0.5214E – 02 0.3488E – 01 0.9532E + 00 0.1138E + 00

0.3488E – 01 0.5214E – 02 0,1138E + 00 0.9532E + 00
[s] ~ag =

0.9532E + 00 0.1138E + 00 0.9206E – 02 0.3098E – 01

0.1138E + 00 0.9532E + 00 0.3099E – 01 0.9208E – 02 1

[

0.1685E + 01 0.5589E + 00 0.2888E + 01 0.1301E + 01–

0.5589E + 00 0.1685E + 01 0.1301E + 01 0.2888E + 01
[s] ;;. =

0.2888E + 01 0.1312E + 01 0.1183E + 01 0.2006E + 01

0.1312E + 01 0.2888E + 01 0.2006E + 01 0.1183E + Ol_

[

0.2205E + 01 0.4397E + 00 0.2846E + O1O.1262E + 01-

O.4397E + 01 0.2205E + 01 0.1262E + O1O.2846E + 01
[s] ;:. =

0.2846E + 01 0.1262E + 01 0.2082E + O1O.2O82E + 01

0.1262E + 01 0.2846E + 01 0.2082E + O1O.959OE + 00.

F=5GHZ

[

0.7048E – 02 0.4577E – 01 0.9470E + 00 O.1O86E + 00-

0.4577E – 01 0.7048E – 02 O.1O86E + 00 0.9470E + 00
[s] yag =

0.9449E + 00 O.1O79E + 00 0.4056E – 02 0.4367E + 01

O.1O79E + 00 0.9449E + 00 0.4367E – 01 0.4056E – 02-

[

0.5580E – 01 0.6218E – 01 0.9386E + 00 0.1406E + 00

0.6218E – 01 0.5581E – 02 0.1406E + 00 0.9386E + 00
[s] & =

0.9386E + 00 0.1406E + 00 0.3419E – 02 0.5839E – 01

0.1406E + 00 0.9386E + 00 0.5839E – 01 0.3418E – 02 1

[

0.2067E + 01 0.3745E + 00 0.2043E + 01 0.4678E + 00

0.3745E + 00 0.2067E + 01 0.4678E + 00 0.2043E + 01
[s] ;:, =

0.2044E + 01 0.4681E + 00 0.1846E + 01 0.5530E + 00

0.4681E + 00 0.2044E + 01 0.5530E + 00 0.1846E + 01 1

[

O. 1934E + 01 0.2880E + 00 0.1987E + 01 0.4032E + 00

0.2880E + 00 0.1934E + 01 0.4032E + 00 0.1987E + 01
[s] ::. =

0.1987E + 01 0.4032E + 00 –0.3218E + 00 0.5316E + 00

0.4031E + 00 0.1987E + 01 0.5317E + 00 –0.3224E + 00 1

As can be seen from the above matrices the a~reement

between the 3-D and 2-D results is reasonable. -

3.3 Computation of the [S] Parameters of a Half Circle

Line

In this section we compute the [S] parameters of a non-

uniform transmission line structure consisting of a 1.5

inches long uniform section, a 0.5 inches radius half cir-

cle section, and finally a 1.5 inches long uniform section.

The line width in this case is 20 roils and the dielectric

constant is 10.2 – j 0.25. The geometrical and electrical

data are shown in Fig. 9, Before the computation of the

frequency dependent [S] parameters of this structure how-

ever, we first compute the real part of the propagation

constant and thus study the effect of the losses on the line.

For this purpose we define two ports, quite far from the

excitation and from the half circle discontinuity. The fre-

quency dependent [Z] parameters of the two ports are then

computed using (28) and the real part a of the propagation

constant is extracted from the [Z] parameters. The real

part of the propagation constant is then computed using a

2-D analysis by treating the line as a uniform infinite line.

Fig. 10 shows a comparison between the 3-D and 2-D
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Fig. 9. Shows the 3-D 2 port network representation of a half circle mi-

crostrip transmission line.
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Fig. 10. Shows a comparison between the 3-D dynamic and the 2-D quasi-
TEM computation of the frequency dependent attenuation factor a of the

line in Fig. 9.

computation of a. The results are almost identical up to

6 GHz and then the 3-D analysis starts predicting higher

losses. This is expected due the radiation losses and the

finite length of the line resulting in a finite load at the line

ends. We next compute the frequency dependent [S] pa-

rameters between ports 1 and 2 by first computing the [Z]

parameters and then using equation (28). Thus Fig. 11

shows a comparison between the [S] parameters obtained

using this 3-D analysis and the experimental data obtained

from the HP85 10A Network Analyzer. The discrepancy

in the magnitude of [S12] and [S21] is about 1.5 dB when

the frequency of operation is such that the structure is ap-

proximately 10 wavelengths which is about the expected

copper loss for this structure.

IV. CONCLUSION

A new technique, based on a combined approach of us-

ing closed form near and far field approximations for the

Sommerfeld microstrip Green’s functions has been pre-

sented. In this technique, the accuracy of the approxi-

mations can be set to any desired value. The dynamic

Green’s functions are evaluated numerically only in the

narrow intermediate field regions resulting in a significant

reduction of computational time. Finally to check the ac-

curacy of this new technique, several numerical examples

have been solved and checked with available data and with

experiment.
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Fig. 11. Shows a comparison between the 3-D theoretical results and the

experimental results for the frequency dependent S12 parameter of the line
in Fig. 9.

APPENDIX
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Wave Number

Radial Separation Constant.

Angular Frequency.

n th pole of DTE.

nth pole of DTM

Real part of the n th pole of DT~.

h~.~~ Imaginary part of the n th pole of DT~.

‘1.TE Real part of the n th pole of DT~.

~ln~~ Imaginary part of the n th pole of DT~.

The subscripts 1 and 2 refer to the different media 1 and

2. The + sign refer to the surface and leaky wave poles

respectively.
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